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ABSTRACT: Estimating concentrations, flow rates or discharges along a stream network 
requires specific models of random functions because usual covariance models are no longer 
valid on such structures. Moreover, variables are generally highly non stationary because of 
the discontinuity at each confluence but also because of relationships with soil properties, that 
have to be taken into account. 

We propose a global model of random functions along a tree graph introducing the concept of 
“elementary thin streams”, defined by the whole set of paths between sources and outlet [de 
Fouquet and Bernard-Michel., 2006]. At each point of the network, the river is considered to 
be the linear combination of these streams on which one dimensional stationary random 
functions are defined.  In practise, the coefficients of the linear combination are determined 
according to the conservation equation of discharge and flux at the forks. 

An application to water discharge on the Moselle Basin (north-east of France) is presented. 
The hydrographic network of this Basin is made of about 100 important nodes and 100 
monitoring stations are available for the last 10 years. Correlations with auxiliary information 
are examined, and theoretical models of covariances and variograms are presented. 
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1. Non stationarity of variables 
1.1. Experimental results 
The experimental study of water discharge on the Moselle Basin gives evidence of its non 
stationarity. The annual water discharge increases from the source to the outlet and 
experimental variograms (Fig. 1. left) show obvious non stationarity, according to the selected 
distance [Bernard-Michel, 2005 and 2006]. 
The non stationarity is due to the conservation of water discharge at confluences. If 3D  is the 
water discharge at a confluence, and 1D  and 2D  the water discharges immediately upstream 
on the two reaches forming the fork, then 3 1 2D D D= + , which involves an increase of the 
mean and of the variance of the associated random function on the network, asuming 
independence of water discharge on parallel rivers. 
 

( ) ( ) ( )3 1 2E D E D E D= +  and ( ) ( ) ( )3 1 2Var D Var D Var D= +  (1) 
 

The non stationarity can also be “explained” by the strong correlation with the drainage basin 
surface (Fig. 1. right) that can be calculated locally by a SIG.  
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Fig. 1. On the left, experimental variograms of annual water discharge in 1996, calculated for different 

distances. On the right: annual mean of water discharge versus drainage basin surface in 1996. 
 
1.2. Specific water discharge 
In order to work with “more” stationary functions, the specific water discharge can be studied 
[Sauquet, 2000]. It is defined as the annual water discharge D  divided by the drainage basin 
surface S : S

DD
S

= . But as with water discharge, this variable is not stationary of order 2: at 

each confluence, the additive relation on water discharge 3 1 2D D D= +  implies the following 

relation for specific water discharge 1 1 2 2
3

1 2

S S
S

S D S D
D

S S
+=
+

. The mean on the whole network is 

then constant but the variance is still non stationary.  
Generally non stationarity can be reduced by taking into account auxiliary information, either 
by a division (specific discharge) or by a regression. But in all cases, non stationarity will 
remain because of the conservation of flux and discharge at confluences. Maintaining 
stationarity by weighting random functions is then unconceivable. 

2. Construction of valid models 
2.1. Random functions on a hydrographic network 
Usual geostatistical models as the spherical covariance, developed for Euclidean space, are 
not valid anymore on tree graphs. Generalizing recent models [Ver Hoef, 2006], we present a 
construction combining any model of one-dimension Random Functions defined on each path 
between sources and the outlet (Fig. 2., left). The principle is as follows: we consider the one-
dimension random functions iY  defined on each path linking one source to the outlet; when 
different paths join at a node, the resulting random function downstream is a linear 
combination of the corresponding iY  using their respective weights. For example, in Fig. 2. 
(right), the specific discharge ( )T x  is a linear combination of 1Y , 2Y  and 3Y . The weights 
depend on the surfaces 1

1S , 2
1S , 2

2S  and 3
2S  (equation (3)). 

Let be  
 GR  the hydrographic network 
 ( )I x : the set of elementary thin streams containing x  
 ( ),J i x : the set of confluences upstreamx , occurred on the elementary thin stream i. 
 iY : the random function defined on the elementary thin stream i. The functions iY  are 

assumed to be stationary, independent, with an equal mean ( )( )  i GE Y x m x R= ∀ ∈ , an 
equal variance ( )( ) 2  i GVar Y x x Rσ= ∀ ∈  and a covariance ( )1C h . 

 i
jS : Drainage basin surface upstream confluence j, on the reach containing the 

elementary stream i. 
 jS : Drainage basin surface just downstream confluence j. 
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 \ i
j jS S : Drainage basin surface upstream confluence j, on the reach that doesn’t 

contain the elementary stream i. 
i
ji

j
j

S
w

S
= : Weight assigned to the elementary stream i immediately downstream confluence j. 

( , )W i x : Weight assigned to the elementary stream i at the position x. 
Then, specific water discharge ( )T x  at position x is equal to: 

( )

( )

( )( , ) i
i I x

T x W i xY x
∈

= ∑  avec  ( )

( ) { }

,( , )
1 si ,

i
j

j J i x
w

W i x
J i x

∈
⎧⎪⎪⎪⎪= ⎨⎪⎪ = ∅⎪⎪⎩

∏
 (2) 

In the example presented on Fig. 2. (right) : 

( ) ( ) ( ) ( )

1 1 2 2 3
2 1 2 1 2

1 2 3
2 1 2 1 2

S S S S ST x Y x Y x Y x
S S S S S

= + +  (3)
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Fig. 2. Left: Construction of elementary thin streams. Right: Extract of the Moselle basin. 

 
2.2. Covariance and variogram 
The statistical properties, mean variance, covariance and variogram can then be deduced from 
equation (2). 
 
Mean and variance 

( )( )E T x m=  and ( )( )
( )

22 ( , )
i I x

Var T x W i xσ
∈

= × ∑  

 
Covariance and variogram 
 

( ) ( )
( )

( ) ( ) ( )
( ) ( )

2
1

1

0  if x and y are not flow connected

, 0 ( , )  si 

, ,  if  and  are flw connected
i I x

i I x I y

C x y C W i x x y

C x y W i x W i y x y
∈

∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪= =⎨⎪⎪⎪⎪⎪ −⎪⎪⎪⎪⎩

∑
∑
∩
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( ) ( )( )

( )
( )

( )
( )

( ) ( ) ( )
( )

( ) ( )( ) ( )
( )( ) ( )

2 22

2
1

2 2 22

\

0 if 

, ,  if  and  are not flow connected

2 , ,

          , , 1 ,

                           if 

i I y i I x

i I x

i I y I x i I x

x y

W i y W i x x y

Var T y T x y x K x y W i x

W i y K x y W i x

x

σ

γ

σ

∈ ∈

∈

∈ ∈

=

⎛ ⎞⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎡ ⎤
⎢ ⎥− = − ⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥+ + −⎢ ⎥⎢ ⎥⎣ ⎦

∑ ∑

∑

∑ ∑
 and  are flow connected,  downstream y y x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪

 

 
Before any model can be inferred, the validity of the underlying hypotheses must be 
established. But there are two major difficulties [Bernard-Michel, 2006]: first, there are very 
few data measurements (less than one per reach) and secondly the assumptions do not relate 
to the specific discharge itself, but to its value on an elementary stream, for which no 
observation is available except near the sources. The results show that hypotheses on 
independence and stationarity are sometimes verified depending on the year, but the inference 
of the model is not advised because the measurements are too few and much more auxiliary 
information is required. 

3. Conclusion 

This paper must be viewed as a first step in the application of geostatistics to river pollution 
problematics on a hydrographic network. It gives a general and easy construction of valid 
theoretical covariance and variogram models on hydrographic networks. The hypotheses 
underlying the model can be verified, but its inference remains difficult because of the few 
measurements available. In the future, measurements frequency has to be increased, and the 
model should be coupled with phenomenological models. 
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